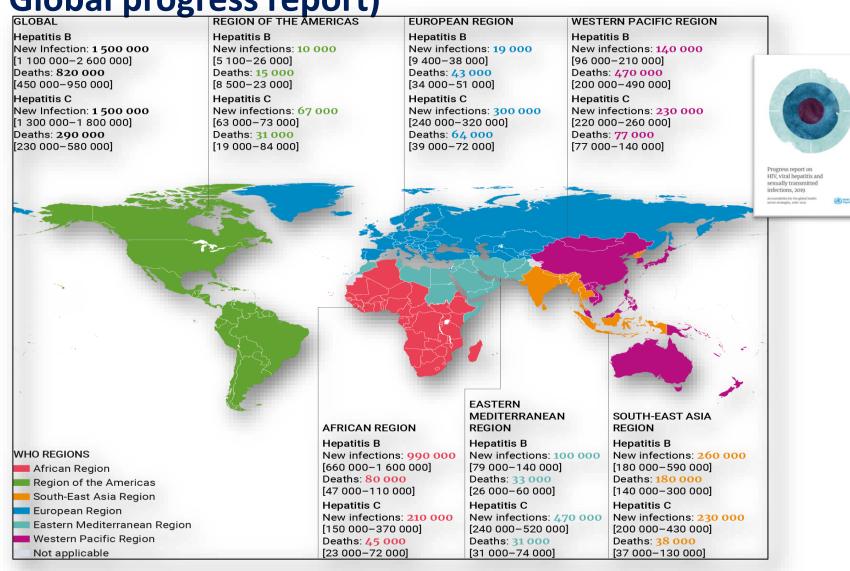
The need of simplification of viral hepatitis care to be delivered in LMIC

Niklas Luhmann; Technical Officer; Global HIV, Hepatitis and Sexually Transmitted Infections Programmes WHO Headquarters

New data on Hepatitis B and C burden, incidence and

mortality by

World Health Organization

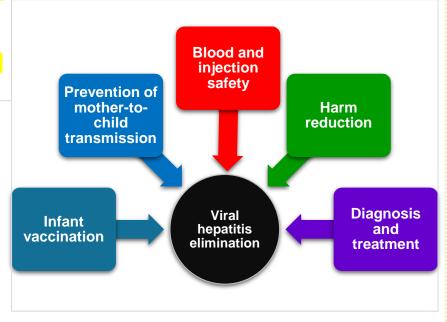

WHO region (2021 WHO Global progress report)

Global Burden
Hepatitis B - 296 m
Hepatitis C - 58 m

Viral Hepatitis

New data on incidence, prevalence

- 3.0 million new HCV & HBV infections
- 1.1 million HCV & HBV deaths with initial signs of HCV declines (290,000 deaths)
- Achieved <5 yr HepB prevalence
 SDG 2020 targets and GHSS goals


Link to GHSS: 9789240053779-eng.pdf

New Global Health Sector Strategy for HIV, VH and STIs World Health Organization

National planning efforts are guided by the global shifts of GHSS 2022-2030:

- Putting people at the centre
- Taking a shared approach towards strengthening health and community systems
- Eliminating stigma, discrimination and other structural barriers

End epidemics and advance universal health coverage, primary health care and health security

End AIDS and the epidemics of viral hepatitis and sexually transmitted infections by 2030

Strategic directions with shared and diseasespecific actions

HIV

strategy

Viral hepatitis strategy

- 1. Deliver high-quality, evidence-based, people-centred services
- 2. Optimize systems, sectors and partnerships for impact
- 3. Generate and use data to drive decisions for action
- 4. Engage empowered communities and civil society
- 5. Foster innovations for impact

Gender, equity and human rights Financing Leadership and partnerships

Link to GHSS: 9789240053779-eng.pdf

Hepatitis B and C Impact & Coverage Targets to reach 2030

Global health sector strategies on, respectively, HIV, viral hepatitis and sexually transmitted infections 2022-2030

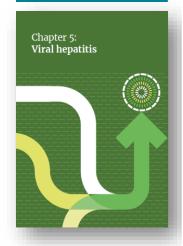
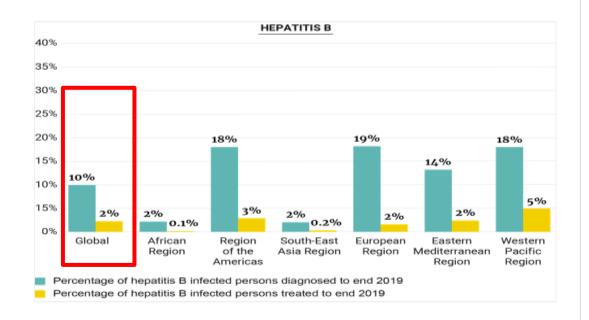


Table 5.1. Impact and coverage indicators, targets and milestones for viral hepatitis by 2030

	Indicator	Baseline – 2020°	Targets – 2025	Targets - 2030
Impact	Hepatitis B surface antigen (HBsAg) prevalence among children younger than 5 years old ^b	0.94%	0.5%	0.1%
	Number of new hepatitis B infections per year	1.5 million new cases	850 000 new cases	170 000 new cases
		20 per 100 000	11 per 100 000	2 per 100 000
	Number of new hepatitis C infections per year	1.575 million new cases	1 million new cases	350 000 new cases
		20 per 100 000	13 per 100 000	5 per 100 000
	Number of new hepatitis C infections per year among people who inject drugs per year	8 per 100	3 per 100	2 per 100
	Number of people dying from hepatitis B per year	820 000 deaths	530 000 deaths	310 000 deaths
		10 per 100 000	7 per 100 000	4 per 100 000
	Number of people dying from hepatitis C per year	290 000 deaths	240 000 deaths	140 000 deaths
		5 per 100 000	3 per 100 000	2 per 100 000
Coverage	Hepatitis B – percentage of people living with hepatitis B diagnosed / and treated	30%/30%	60%/50%	90%/80%
	Hepatitis C – percentage of people living with hepatitis C diagnosed / and cured	30%/30%	60%/50%	90%/80%

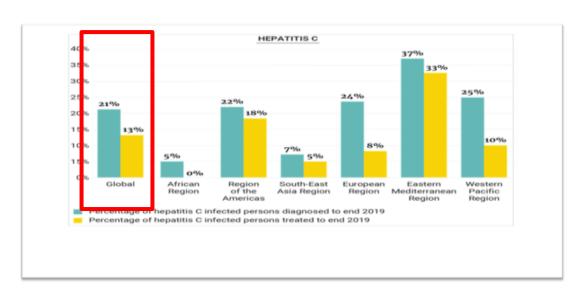

Latest data for end 2020. Some targets use data from 2019 because of COVID-19 related service disruptions in the data reported for 2020. COVID-19
is not currently expected to affect the targets for 2025. All data will be disaggregated by age, sex and when relevant the focus populations specific
to the disease.

Coverage	Percentage of newborns who have benefitted from a timely birth dose of hepatitis vaccine and from other interventions to prevent the vertical (mother-to-child) transmission of hepatitis B virus ^c	50%	70%	90%
	Hepatitis B vaccine coverage among children (third dose)	90%	90%	90%
	Number of needles and syringes distributed per person who injects drugs ^d	200	200	300
	Blood safety - proportion of blood units screened for bloodborne diseases	95%	100%	100%
	Safe injections - proportion of safe health-care injections	95%	100%	100%
	•	•	•	•

Please note that the targets in this table are global targets and should be adapted to set targets for countries in relation to the national context. For example, in some countries a target for hepatitis 8 surface antigen prevalence among children younger than five years may be less than 0.1% or 0.2%, although the overall global target should be 0.1%.

Cascade of care - major gaps in path towards public health elimination

10% of estimated 296 million people with chronic HBV infection were diagnosed in 2019 with variation by regions



Data shows major gaps in path towards universal health access and public health elimination

Progress report on HIV, viral hepatitis and sexually transmitted infections 2021: accountability for the global health sector strategies, 2016–2021: actions for impact, Geneva; World Health Organization; 2021

21% of estimated 58 million people with chronic HCV infection were diagnosed in 2019 with variation by regions

Data shows major gaps in path towards universal health access and public health elimination

World Health

Progress report on HIV, viral hepatitis and sexually transmitted infections 2021: accountability for the global health sector strategies, 2016–2021: actions for impact, Geneva: World Health Organization: 2021

WHO Guidelines and simplification

Distinctive Features of WHO Guidelines

Feature	WHO Guidelines	Other Guidelines
Settings	 Low- and middle-income countries Generalised/concentrated epidemic settings 	High-income countries
Target audience	National Program Managers	Treating clinicians
Approach	 The "public health approach" Simplified and standardized approaches Preferred regimens 	 Individualized treatment Multiple treatment options
Formulating recommendations: Evidence-based approach	GRADE - Feasibility, equity, end-user acceptability, resource use considered	 Variable use of evidence-based framework
Guidelines Committee representation	 50% LMICs, programme managers, civil society 	 Clinicians and researchers HICs

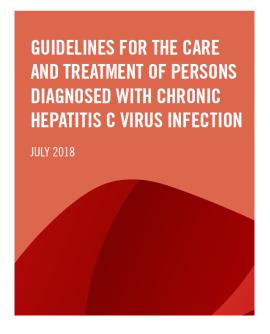
WHO GUIDELINES
FOR THE SCREENING,
CARE AND TREATMENT OF
PERSONS WITH
HEPWRITIS CONFECTION

Topic	2014	2016	2018	2022
Who to treat?			Treat All	Treat All
Genotyping	Yes	Yes	No	No
Regimens	PEG-IFN+RBV	DAAs preferred	Pan-genotypic DAAs	Pan-genotypic DAAs
	8 options - PEGIFN+RBV - SOF+RBV - SIMP or TELAP or BOCEP /PEGIFN+RBV	6 options DAAs preferred by GT or cirrhosis	3 options SOF/DAC SOF/VEL G/P PEGIFN phase out	3 options SOF/DAC SOF/VEL G/P
		SIMPLER TREATMEN	TS	
Age group	Adults ≥18yrs	Adults≥ 18yrs	Adults ≥18yrs and adolescents ≥12 yrs	Adults, adolescents and children≥3 yrs
			TREATMENT OF CHILDR	EN AND ADOLESCENTS
Service Delivery			8 Good Practice Principles for Simplified Service	Decentralization Integration Task-shifting
			SIMPLIFIED SEF	RVICE DELIVERY

CHAPTER 6. SIMPLIFIED SERVICE DELIVERY FOR A PUBLIC HEALTH APPROACH TO TESTING, CARE AND TREATMENT FOR HCV INFECTION

Box 6.1. Good practice principles for health service delivery

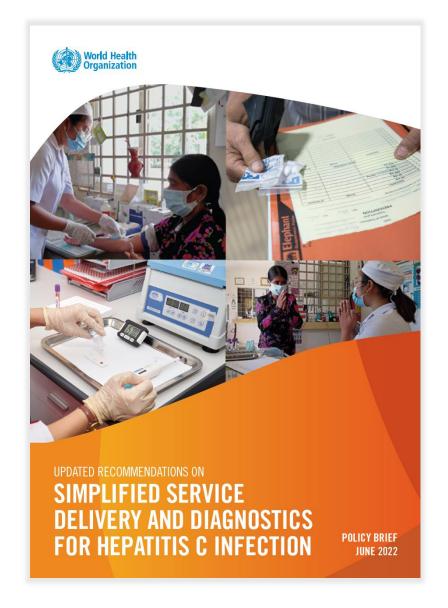
- Comprehensive national planning for the elimination of HCV infection based on local epidemiological context, existing health-care infrastructure, current coverage of testing, treatment and prevention, and available financial or human resources
- Simple and standardized algorithms across the continuum of care from testing, linkage to care and treatment
- 3. Strategies to strengthen linkage from testing to care, treatment and prevention
- Integration of hepatitis testing, care and treatment with other services (e.g. HIV services) to increase the efficiency and reach of hepatitis services
- b. Decentralized testing and treatment services at primary health facilities or harm reduction sites to promote access to care. This is facilitated by two approaches:
- 5a. task-sharing, supported by training and mentoring of health-care workers and peer workers:
- 5b. a differentiated care strategy to assess level-of-care needs, with specialist referra as appropriate for those with complex problems
- Community engagement and peer support to promote access to services and linkage
 to the continuum of care, which includes addressing stigma and discrimination.
- Strategies for more efficient procurement and supply management of quality-assured affordable medicines and diagnostics
- 8. Data systems to monitor the quality of individual care and coverage at key steps along the continuum or cascade of care at the population level.


Time	DAA alone	DAA + ribavirin ^a
	Full blood count, renal, liver function	Full blood count, renal, liver function
Baseline	Xp	Χ
Week 4		X
Week 12 after end of treatment	Χ	Χ

^a Recommended treatment for adolescents with genotypes 2 and 3 HCV infection

TABLE 5.1 Low and high cut-off values for the detection of significant fibrosis and cirrhosis

	APRI (low cut-off)	APRI (high cut-off)	FIB-4 (low cut-off)	FIB-4 (high cut-off)
Significant fibrosis (METAVIR ≥F2)	0.5	1.5	1.45	3.25
Cirrhosis (METAVIR F4)	1.0	2.0	_	_



^b If Hb >10 g/dL then no need to check again at week 4

RECOMMENDATIONS

Decentralization, Integration and Task-shifting Moving treatment and care out of speciality clinics

Decentralization:

We recommend delivery of HCV **testing** and **treatment** at peripheral health or community-based facilities, and ideally at the same site, to increase access to diagnosis, care and treatment.

These facilities may include primary care, harm reduction sites, prisons and HIV/ART clinics as well as community-based organizations and outreach services.

Integration:

We recommend integration of HCV **testing** and **treatment** with existing care services at peripheral health facilities. These **services** may include primary care, harm reduction (needle and syringe programme (NSP)/opioid agonist maintenance therapy (OAMT) sites), prison and HIV/ART services.

Strong recommendation/ moderate certainty of evidence (PWID/prisoner) low (general population, PLHIV)

Task-sharing: We recommend delivery of HCV **testing, care and treatment** by trained non-specialist doctors and nurses to expand access to diagnosis, care and treatment.

Strong recommendation/ moderate certainty of evidence

https://www.who.int/publications/i/item/9789240052697

RATIONALE for Recommendations on Decentralization, Integration and Task-sharing

Evidence review

- 142 studies from 33 countries (14%) LMICs) compared full decentralization/integration vs. partial decentralization or none, and task-sharing to non-specialists.
- Increased uptake of HCV viral load testing, linkage to care and treatment among people who inject drugs and prisoners for full decentralization/integration.
- Comparable SVR12 cure rates between specialists and non-specialists across all populations and in all settings

https://www.who.int/publications/i/item/9789240052697

Decentralisation, integration, and task-shifting in hepatitis C virus infection testing and treatment: a global systematic review and meta-analysis

Eno Dru, Adam Trickey, Rohan Shirali, Stave Kantara, Milliopo Ecsterbrook

Summary

Background Increasing across to hopatitis C virus (HCV) care and treatment will require simplified service delivery models. We aimed to evaluate the effects of decentralization and integration of testing, care, and treatment with harm-orderden and other services, and task-shifting to non-specialists on outcomes across the HCV care continuum.

Nethods For this systematic review and meti-analysis, we searched PubMed, Emisses, WHO Global Index Medicus, and conference abstracts for studies published between Jan 1, 2008, and Fob 20, 2018, that evaluated uptake of HCV testing, Initiage to care, invariance, care assessment, and sustained virological superses at 12 weeks [SWRI2] in people who inject drugs, people in prisons, people living with HIV, and the general population. Randomized controlled trials, non-randomized studies, and observational studies were eligible for inclusion. Studies with a sample size of two less for the largest denominator were excluded. Studies were eligible for inclusion. Studies with a sample size of two less for the largest denominator were excluded. Studies were categoried according to the level of decentralisation: full (testing and treatment at some site), partial (testing at decentralised site and referral elevelene for treatment), or nane. Taksohifting was categorised as treatment by specialists or non-specialists. Data on outcomes across the care continuum (limitage to care, treatment uptake, and SWRI2) were pooled using studies—effects meta-analysis.

Findings Our search identified 1659 reports, of which 132 met the eligibility criteria, and an additional ten reports were identified from reference citations and gost literature. Therefore, the final synthesis included 142 studies from 34 countries [28] [454] studies from low-income and middle-income countries], and a total of 489396 patients (239446 [4398] from low-income and middle-income countries). Bates of linkage to care were higher with full decentralisation compared with partial or no decentralisation among people has inject drugs [61] [5394. CI 57–85] or partial 5378 [18–67] re none 47% [11–84]) and among people in prisons [full 348 [79–100] or partial 3998 [29–71], although the Cis overlap for people who inject drugs [61] [54] [55] [55] [61] or partial 3998 [53–57] or none 3396 [23–48] people in prisons [61] [728 [43–91] or partial 3998 [73–68] [63–69] or partial 4608 [55–77] or none 3396 [23–48] people in prisons [61] [728 [43–91] or partial 3998 [73–68], although Cis overlap for full versus partial decentralisation. The results in the general population studies were norse between contralisation and partial decentralisation. The results in the general population studies were norse between contralisation and partial decentralisation. The results in the general population studies were norse between contralisation and partial decentralisation. The results in the general population studies were norse between an another of the interesting of care and treatment to a non-specialist view as associated with similar SVRI2 rates to treatment delivered by specialists. There was a severe or critical risk of hiss for 4498 of studies, and the technogenetic across studies tended to be very high [69–909] or partial decentralisation.

	Events	Total		Proportion (95% CI
Full decentralisation			I	
Seldenburg et al (2013)	85	85		1-00 (0-96-1-00)
Sander-Hess et al (2018)	31	31		1-00 (0-89-1-00)
Wade et al (2018), Intervention group (RCT)	52	59		0-88 (0-77-0-95)
Hashim et al (2018)	169	211	-	0-80 (0-74-0-85)
Olaizola et al (2018)	15	19	-	0-79 (0-54-0-94)
D'Loan et al (2018)	88	116	-	0-76 (0-67-0-83)
Midgard et al (2018)	263	348	1 =	0.76 (0.71-0.80)
ack et al (2009)	86	118		0.73 (0.64-0.81)
Vade et al (2015)	186	279	-	0-67 (0-61-0-72)
edrana et al (2018)	48	76	-	0-63 (0-51-0-74)
lalis et al (2018)	79	47		0-62 (0-46-0-75)
age et al (2018)	32	71		0-45 (0-33-0-57)
Radley et al (2018), Intervention group (RCT)	215	545		0-39 (0-35-0-44)
Wikinson et al (2008)	83	411	_	0-20 (0-16-0-24)
Random-effects model	03	2416	_	0-72 (0-57-0-85)
leterogeneity:12–98%, p<0-0001		2410		0/2(05/-005)
Partial decentralisation				
(lkvidze et al (2018)	338	350	-	0-97 (0-94-0-98)
Helen et al (2018)	85	114		0-75 (0-66-0-82)
wan et al (2018)	103	141	1	0-73 (0-65-0-80)
slam et al (2012)	68	96		0-71 (0-61-0-80)
Wong et al (2014)	69	98	1	0-70 (0-60-0-79)
Masson et al (2013), Intervention group (RCT)	97	149	1	0-65 (0-57-0-73)
Martinez et al (2012)	76	125		0-61 (0-52-0-69)
outton et al (2018)	369	710	≖ T	0-52 (0-48-0-56)
oroghi et al (2018)	49	97	-	0-51 (0-40-0-61)
Antonini et al (2018)	2	4		0-50 (0-07-0-93)
Aggaldi et al (2018)	77	200		0-38 (0-32-0-46)
Masson et al (2013). standard treatment group (RCT)	51	137	-	0-37 (0-29-0-46)
foleska et al (2018)	34	126		0-27 (0-19-0-36)
Radley et al (2018) standard treatment group (RCT)	140	540	<u> </u>	0-26 (0-22-0-30)
Blackburn et al (2016)	198	861	- T	0-23 (0-20-0-26)
orter et al (2017)	7	44		0-16 (0-07-0-30)
Random-effects model	,	3792		0-53 (0-38-0-67)
leterogeneity: I ² =99%, p<0-0001		3/3-		- 33 (- 3
No decentralisation				
Wade et al (2018), standard treatment group (RCT)	38	57		0-67 (0-53-0-79)
allsel et al (2018)	9	34		0-26 (0-13-0-44)
Random-effects model	-	91		0-47 (0-11-0-84)
Heterogeneity: I ² =93%, p<0-0001		-		2 (2 22 2 24)
Random-effects model		6299	-	0-61 (0-51-0-71)
Heterogenelty: I ² =98%, p< 0-0001				
esidual heterogeneity: I2=98%, p<0-0001			0-2 0-4 0-6 0-8 1-0	

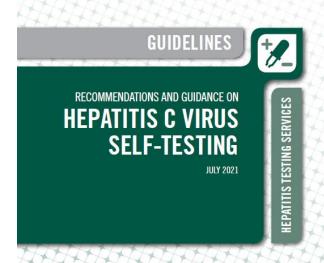
RECOMMENDATIONS 2022 Recommendations on HCV diagnostics

HCV point-of-care (POC) viral load RNA testing:

- Point-of-care (POC) HCV RNA viral load assay can be an alternative approach to laboratory-based HCV RNA NAT assays to diagnose HCV viraemic infection.
- Point-of-care (POC) HCV RNA assays with comparable limit of detection to laboratory-based assays can be used as an alternative approach as test of cure.

WHO recommendation on HCV self-testing (2021)

Hepatitis C virus (HCV) self-testing should be offered as an additional approach to HCV testing services


(strong recommendation, moderate-certainty evidence)

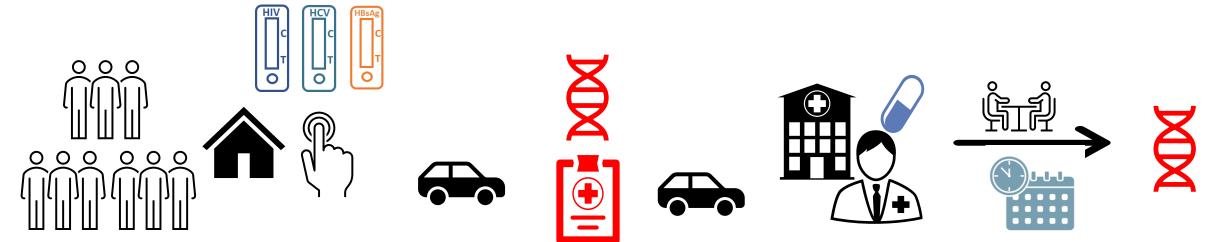
Remarks:

- HCV self-testing needs to be followed by linkage to appropriate post-test services, including confirmation of viraemic infection, treatment, care and referral services, according to national standards.
- It is desirable to adapt HCV self-testing service delivery and support options to the national and local context, which includes community preferences.
- Communities, including networks of key and vulnerable populations and peer-led organizations, need to be meaningfully and effectively engaged in developing, adapting, implementing and monitoring HCV self-testing programmes.

Case example India

CoNE is a network of 11 CBOs of people who use drugs in Manipur

Realized that the uptake of testing, diagnosis and treatment within the national program was very limited

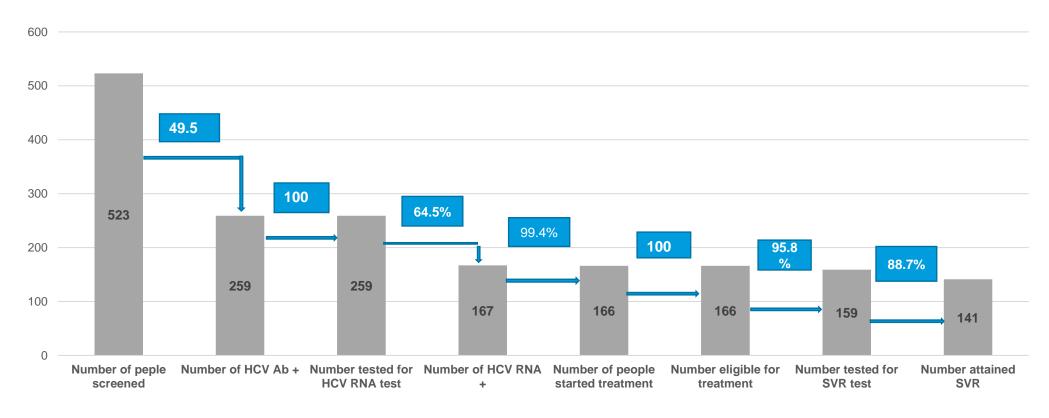

 Thus initiated a replicable model of same day HCV screening, diagnosis and treatment initiative among PWID

- Providing free diagnosis and treatment through philanthropic and local support
- Developing different models of HCV treatment, including for prison inmates
- Developing policy materials and state specific standard operating procedure on HCV
- Uninterrupted HCV services during COVID-19 restrictions
- Advocating for quality HCV services both at state and national level

Method

Turn Around Time

Lime	hetween	RDI	and	treatment	initiation
			alla	- ti Gatillolit	HIHAHOI


n	164
median	6 hours 49 min
min - max	4 hours 36 min - 12 hours 18 min
IQR 1 – IOR 3	5 hours 48 min - 8 hours 35 mins

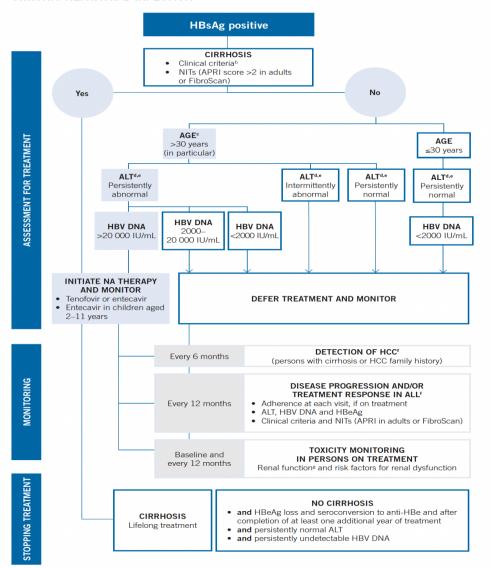
HCV Care Cascade (Results)

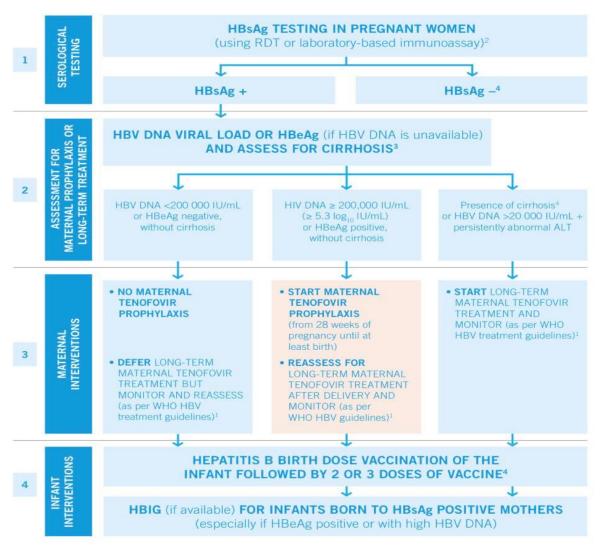
^{* 1} participant not initiated on treatment is also living with hepatitis B and will be initiated on treatment as per India's National Viral Hepatitis Control Program guidelines

^{* 2} expired due to drug overdose

^{* 5} out of station

^{* 18} SVR not achieved


HBV Guideline Recommendations (2015) and PMTCT update (2020)



ALGORITHM OF WHO RECOMMENDATIONS ON THE MANAGEMENT OF PERSONS WITH CHRONIC HEPATITIS B INFECTION®

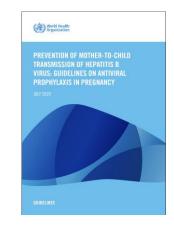
New Directions – Updating WHO hepatitis B guidelines 2023

Who to treat?

 Expanding criteria for treatment (lower APRI score >0.5 and HBV DNA threshold >2000 IU/ml)

PMTCT

 Expanding criteria for use of antiviral prophylaxis to all HBsAg positive pregnant women


Simplifying diagnosis

- Use of PoC HBV DNA viral load and reflex viral load testing
- Delta virus testing Who to test and how to test and reflex testing

Simplifying service delivery

Decentralisation, integration and task-sharing

Summary

Simplification has diverse "faces":

- Simplified clinical algorithms
- Simplified service delivery including PHC

- It is crucial to make care person-centred and to reach elimination

12/8/2023 | Title of the presentation 21

Contact

